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ABSTRACT 
 
Thispaper presents a study to examine the characteristics of the 
rudder inflow (propeller slipstream) using FLUENT v.6 
visualization technique. The rotating propeller of 5 blades and 
semi-spade rudder were set in a uniform flow condition. The 
rudder distorts the angle-of-attack (AoA) or incident angle to the 
leading edge of the rudder blade. Time-averaged pressure and 
velocity field are proposed to analyze the AoA and show similar 
AoA values of 0°–7° at the region on rudder. However, it 
increases to 20° by those effects as the inflow comes to the 
rudder. From the AoA analysis the similar flow pattern is found 
to be about 7° in terms of the rudder angle. Cautious access is 
additionally necessary to introduce a reasonable safety against 
those inflow phenomena that would significantly influence the 
durability of the rudder. 
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1.0 INTRODUCTION 
 
Systematic prediction of propulsion system design is crucial 
towards efficient propulsion. Mainly contributed by the propeller, 
it is thrusting forward by screw movement and flow passing these 
twisted edges surrounding it. The hydrodynamic analysis of 
rotating propeller in vicinity of a rudder is somewhat a complex 
one. It has become one of the most challenging problems in 
computational fluid dynamics (CFD) validation [1], [2] and it has 

been investigated conventionally using potential theory for 
decades. As the year progressing, CFD has now become a 
practical tool in solving propeller flow problems via Reynolds 
Averaged Navier Stokes (RANS) solver. As ships are becoming 
larger and their power consumption is also increasing, high axial 
momentum behind a ship propeller may induce strong cavitation 
on the surface or discontinuities in the ship rudder. The propeller 
wake intrinsically has the contracted slipstream tube in the 
condition of uniform flow. However, it has specific angles of 
attack to the left (port) and right (starboard) sides of the rudder 
blade, which is located behind a propeller as validated by Kim, 
et.al  [2] as shown in Fig.1.  
 

Figure 1.a): Flow paint streaks 
on the port side of rudder [2] 

Figure 1.b): Flow paint streaks 
on the starboard side of rudder 
[2] 

 
The differences in incident flows toward the rudder have 

affected its lift forces and ships’ manoeuvrability. To obtain 
sufficient lift forces in the rudder, an excessive rudder angle may 
be required in the actual operation of ship. On the other hand, an 
increased rudder angle induces a large amount of violent rudder 
cavitation, and may cause cavitation erosion of its surface. 
Securing sufficient lift has often conflicted with the trials of 
reducing rudder cavitation in both full-spade and semi-spade 
rudders. Rudder cavitation could have a negative effect on ships 
from hydrodynamic and structural viewpoints. If strong cavitation 
on the rudder results in serious damage, considerable time and 
cost would be necessary to maintain or repair a rudder eroded by 
cavitation. Therefore, it is very important to inspect flow 
behaviour around the rudder when the propeller is ahead of the 
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• Outer boundary – non viscous wall. 
Tests were performed at full scale. The rudder rests at three 

designated positions; AoA= 00,-70 and  -200 positioned 0.0958D 
from top of hub as per classification requirement. Information 
regarding angle of attack is available in Fig. 3b). The solver 
setting was based on [1]. The advance speed, VA was fixed at 
6.687 m/s. The stator inlet was designated as velocity inlet, while 
the stator outlet was designated as pressure outlet with normal 
atmospheric pressure. 

Regarding the solver setting, pressure based calculation with 
absolute velocity formulation and steady flow were selected. 
Total number of mesh elements for rudder AoA = 00,-70 and -200 

are averaged at 1.8millions while  OWT 1 and OWT 2 counts for 
1.485 millions in average. Fluid domain was specified as fresh 
water and aluminium for solid domain.  

Proceeding to solution methods, simple pressure-velocity 
coupling was selected with second order upwind for momentum 
turbulent kinetic energy and turbulent dissipation rate. Detailing 
the boundary conditions, velocity inlet was selected for stator 
inlet with intensity and viscosity ratio of 10 for the turbulent 
specification method. Pressure outlet is defined for the stator 
outlet with zero gauge pressure and similar turbulent specification 
as stator inlet. All convergence rests at 0.001. 
 
 
4.0 RESULTS AND DISCUSSION 
 
Figures 4 – 9 show that the pressure distribution at starboard side 
was higher than the one at port side, it means that the flow goes 
on the negative AoA. Time-averaged pressure field are proposed 
to analyze the AoA and show similar AoA values of 0°,–7° at the 
region on rudder. However, it increases to -20° by those effects as 
the inflow comes to the rudder. The maximum pressures are 
located at absolute Z = 0.7R near the upper rudder face view from 
port side and lower rudder face of starboard side. These may 
happen due to clockwise movement of the propeller slipstream. 
This is the phenomenon where tip vortices sourcing from 
propeller attacks rudder surface.  
 

Figure 4: Rudder pressure contours port side views AoA=00 
 

As the rudder deflects more, significant pressure drop can be 
noticed at absolute Z = 0.7R port side of rudder leading edge. 

This is likely the occurrence of cavitation inception, in which the 
lower pressure values as indicated in the Figures 5 and 6 have 

crucial effects on the cavitation and flow separation, as claimed 
by [4,5]. 

 

Figure 5: Rudder pressure contours port side views AoA=-70 
 

Figure 6: Rudder pressure contours port side views AoA=-200 
 

Figure 7: Rudder pressure contours starboard side views 
AoA=00 
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Figure 8: Rudder pressure contours port side views AoA=-70 
 

Figure 9: Rudder pressure contours port side views AoA=-200 
 
Next Figs 10 – 12 represent rudder ambient velocity contours in 
XZ cross sectional plane positioned right after the rotational 
domain (X= -0.291m). 
 

 
Figure 10: Velocity contours of surrounding fluids starboard 

side views at rudder angle AoA=00 

 

 
Figure 11: Velocity contours of surrounding fluids starboard 
side views  at rudder angle AoA=-700 
 

 
Figure 12: Velocity contours of surrounding fluids starboard 
side views  at rudder angle AoA=-200 
 
As we can see, significant amount of velocity difference are 
noticed at the region of Z = 0.7R, near top side of rotating 
propeller. The amount of velocity becomes larger as the rudder 
started to deflect and slightly lower as the rudder deflects to -200. 
An indicator of tip vortex cavitation may prevail here, in which 
regions of high velocity tailing from propeller tip is a sign of 
lower pressure compared to fluid at rest (Bernoulli’s law).This 
may happen due to typically low advance velocity on the upper 
side of a rotating propeller, viewed from propeller back. High 
propeller blades angle of attack is the cause to the lower pressure 
and therefore experiences higher velocity. 
 
 
5.0 CONCLUSION 
 
The flow of propeller-rudder interaction has been investigated 
using RANS modelling. Significant differences in terms of 
induced velocity field and pressure distribution could be noticed. 
Prediction and inspection of flow behaviour could be made 
possible in order to locate the cavitation susceptibility as early 
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precaution to structural assessment of rudder. These 
characteristics are important for further assessment especially 
durability of propeller and strength assessment for safety 
manoeuvring. This moving reference frame method provides an 
adequate solution for the determination of time accurate solution 
to predict the propeller and rudder interaction.  
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